Вконтакте Facebook Twitter Лента RSS

Что является основной причиной снижения работоспособности мышц. Утомление мышц. Физиологические особенности мышечной системы: утомление мышц

Спортсмены постоянно подвергаются различным типам , и некоторые из них превышают порог переносимости. В результате снижается , что оказывает негативное влияние на общую результативность. Когда спортсмены выходят за пределы собственных физиологических возможностей, возникает риск накопления усталости, при этом чем больше усталость, тем сильнее проявляется негативный эффект от тренировок, который выражается в низких темпах , ухудшении и снижении вырабатываемой энергии.

Центральная нервная система отвечает за два основных процесса: возбуждение и блокировку. Возбуждение является стимулирующим процессом для физической активности, в то время как блокировка является процессом ограничивающим. Во время тренировки оба процесса сменяют друг друга. В результате стимулирования центральная нервная система посылает нервный импульс к работающей мышце, вызывая ее сокращение. Скорость, мощность и частота импульса напрямую зависят от состояния центральной нервной системы. Эффективность нервных импульсов возрастает, когда преобладает возбуждение (управляемое), вследствие чего спортсмен добивается хорошего результата. Когда утомление блокирует нервную клетку, мышцы сокращаются медленнее и слабее. Таким образом, электрическое стимулирование центральной нервной системы определяет количество задействованных и передачу нервных импульсов, которая, в конечном итоге, оказывает влияние на силу сокращения мышц.

Производительность нервной клетки невозможно поддерживать очень долго, и она снижается под влиянием напряжения соревновательного или тренировочного процесса. Если высокий уровень интенсивности сохраняется, нервная клетка переходит в состояние блокировки для защиты от внешней стимуляции. Следовательно, утомление необходимо рассматривать как механизм самозащиты, предназначенный для недопущения ущерба для .

Кроме того, интенсивные упражнения приводят к развитию ацидоза, который, в первую очередь, вызывается накоплением в . Высокий уровень ацидоза может оказывать негативное влияние на выделение кальция, необходимого для . В сущности, возбудительный нервный импульс может достигать мышечной мембраны, но будет заблокирован мембраной выделения .

Симптомы мышечного утомления

Тренеры должны следить за симптомами мышечного утомления. Опытный тренер всегда сможет заметить признаки утомления в силовых и скоростных видах спорта. Реакция спортсмена на взрывную деятельность замедляется, наблюдается легкое нарушение координации, и увеличивается продолжительность фазы контакта при , скачках и отскоках, и . Основой данных видов деятельности является стимулирование , на которые утомление оказывает большее влияние в сравнении с . Таким образом, даже незначительная блокировка центральной нервной системы оказывает влияние на задействование мышечных волокон.

Как было продемонстрировано в работах Марсдена, Медоуза и Мертона , частота работы в конце 30-секундного сокращения при максимальной интенсивности снижается на 80 процентов в сравнении с частотой на момент начала сокращения. Аналогичные результаты были продемонстрированы в работах Де Лука и Эрим и Конвит и др. : по мере увеличения продолжительности сокращения, увеличивается активизация крупных двигательных единиц, при этом частота работы находится ниже обычного порога частоты активизации.

Результаты, продемонстрированные в указанных работах, должны насторожить сторонников теории увеличения силы (в особенности в американском футболе) исключительно за счет выполнения каждого комплекса до полного изнеможения. Об изъянах этой широко распространенной методики свидетельствует факт снижения рабочей частоты с каждым последующим повторением.

По мере выполнения сокращений истощаются источники энергии, результатом чего является более продолжительное время отдыха двигательной системы и снижение частоты сокращения мышцы, что, в свою очередь, приводит к снижению выработки энергии. Предположительно причиной такого нервно-мышечного поведения является утомление. Реальные факты должны сигнализировать практикующим специалистам о том, что непродолжительных перерывов на отдых (обычно в течение одной-двух минут) между двумя комплексами при максимальной нервной нагрузке недостаточно для расслабления и восстановления нервно-мышечной системы с целью обеспечения высокого уровня активизации при выполнении последующих комплексов.

При анализе функциональности центральной нервной системы во время утомления тренерам следует принимать во внимание утомление, ощущаемое спортсменом, и физические возможности спортсмена, которые достигаются во время тренировки. Когда физические возможности превышают уровень утомления, ощущаемого во время тестов или соревнований, увеличивается мотивация и, как следствие, способность преодолевать утомление.

Таким образом, следует развивать указанную способность преодолевать утомление во время соревнований, в особенности для тех видов спорта, в которых наблюдается высокая зависимость интеллектуальных качеств от утомления, например, в командных видах спорта, в видах спорта, где применяются ракетки, и в спортивных единоборствах.

Недостаток аденозитрифосфата, креатинфосфата и гликогена

В зависимости от вида деятельности, мышечное утомление возникает при истощении запасов мышечного или креатинфосфата в работающих мышцах . Результат данного явления очевиден: работоспособность мышцы снижается.

Для краткосрочных высокоинтенсивных видов деятельности, таких как выполнение комплексов с небольшим количеством повторений или бег на короткую дистанцию, непосредственными источниками энергии для сокращения мышц являются аденозинтрифосфат и креатинфосфат. Истощение запасов данных веществ в мышцах ограничивает способность мышцы к сокращению (Karlsson и Saltin, 1971). Тем не менее во время отдыха происходит активная работа , целью которой является восстановление фосфатов за счет процесса, который называется аэробным фосфорилированием. Как следствие, даже для скоростно-силовых видов спорта необходима соответствующая аэробная среда .

В мышце с пониженным содержанием гликогена в результате, например, продолжительной деятельности, носящей периодический характер, которая является типичной для командных видов спорта, скорость потребления аденозинтрифосфата превышает скорость его выработки. Результаты исследований показывают, что гликоген является жизненно необходимым веществом для обеспечения возможности мышцы поддерживать высокий уровень силы и что выносливость во время продолжительной активности при средней и высокой нагрузке непосредственно зависит от количества гликогена в мышцах до начала упражнения . Итак, причиной утомления может также стать недостаток гликогена в мышцах .

Во время продолжительной работы при субмаксимальной нагрузке, например, при тренировке мышечной выносливости средней и большой продолжительности, источниками энергии являются жирная кислота и глюкоза. В ходе данного процесса также необходим кислород. При ограниченном поступлении кислорода вместо окисления углевода происходит окисление жирной кислоты. Максимальное окисление свободной жирной кислоты определяется притоком жирной кислоты к работающей мышце и аэробным состоянием спортсмена, поскольку аэробная тренировка повышает как поступление кислорода, так и окисляемость жирной кислоты . Таким образом, причинами мышечного утомления являются недостаток кислорода, слабый уровень транспортировки кислорода и ненадлежащий кровоток .

Накопление молочной кислоты

После нескольких секунд максимального сокращения начинает использовать мышечный гликоген для производства , при этом начинает накапливаться . Совокупное одновременное снижение уровня креатинфосфата и накопление молочной кислоты снижает способность мышцы к максимальному сокращению . Это имеет важное значение для движений, требующих быстроты или силы сокращения, поскольку их основой является сокращение мощных быстро сокращающихся волокон. Такие действия являются , они выполняются за счет анаэробной энергии и вызывают повышение уровня выработки и накопления молочной кислоты. В ходе выполнения высокоинтенсивных комплексов до (при высокой нагрузке), если общая продолжительность действий, осуществляемых под напряжением во время комплекса, превышает восемь секунд, быстро сокращающиеся волокна вырабатывают большое количество лактата. При этом блокируется любое непосредственное стимулирование, исходящее от центральной нервной системы. Таким образом, последующий высокоинтенсивный комплекс может выполняться только после более продолжительного периода отдыха.

Биохимический обмен, происходящий во время сокращения мышц, приводит к высвобождению ионов водорода, что, в свою очередь, вызывает ацидоз или еще не полностью изученное «лактатное утомление», которое, по всей видимости, определяет точку истощения . Чем активнее мышца, тем выше концентрация ионов водорода и, соответственно, тем выше уровень ацидоза крови. Ионы водорода также стимулируют высвобождение гормона роста из аденогипофиза . Несмотря на название, основной эффект, оказываемый всплеском гормона роста в результате метаболически интенсивной тренировки, заключается в усилении липолиза (сжигания жира) , который является одной из причин эффективности лактатных тренировок при снижении веса. Среди других причин можно выделить высокий расход калорий в минуту и повышенное потребление кислорода после выполнения упражнений, которые усиливают обмен веществ, продолжающийся до 24 часов. Несмотря на широко распространенное убеждение в обратном, всплеск гормона роста или, по сути, , вызванный упражнениями, не оказывает влияния на .

В результате дезактивации тропонина, являющегося одним из компонентов белков, повышенный ацидоз также блокирует связующую способность кальция. Поскольку тропонин принимает активное участие в сокращении мышечной клетки, его дезактивация может привести к возникновению утомления . Дискомфорт, провоцируемый ацидозом, также может быть одной из причин психологического утомления . Тем не менее мышечный ацидоз не является причиной болезненного ощущения в мышцах после тренировки. На самом деле, как показано в таблице, удаление лактата происходит достаточно быстро, поскольку он окисляется мышечными волокнами, а также трансформируется печенью обратно в глюкозу (посредством цикла Кори).

Время, необходимое для удаления лактата из крови и мышц

Время (мин)

Читайте также

Источники

  1. Enoka, R.M., and Stuart, D.G. 1992. Neurobiology of muscle fatigue. Journal of Applied Physiology 72 (5): 1631-38.
  2. Schillings, M.L., et al. 2000. Central and peripheral aspects of exercise-induced fatigue, www.med.uni-jena. de/motorik/pdk/schillings .pdf.
  3. Noakes, T.D., et al. 2005. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans: Summary and conclusions. British Journal of Sports Medicine 39:120-24. doi:10.1136/bjsm.2003.010330.
  4. Weir, J.P., et al. 2006. Is fatigue all in your head? A critical review of the central governor model. British Journal of Sports Medicine 40 (7): 573-86.
  5. Bigland-Ritchie, B., Johansson, R., Lippold, O.C.J., and Woods, J.J. 1983. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50 (1): 313-24.

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения . Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. Изометрическое сокращения . Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы, например при поддержании позы тела.

3. Ауксотонические сокращения . Изменяются и длина, и тонус мышцы. С помощью их происходит передвижение тела и другие двигательные акты.

Максимальная сила мышц – это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, а также пола, возраста, степени тренированности человека.

В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения – это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а, следовательно, и сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон.

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании сила также увеличивается, а при охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами (кистевым, становым и т.д.).

Для сравнения силы различных мышц определяют их удельную или абсолютную силу . Она равна максимальной силе, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 62 кг/см 2 , трехглавой – 16,8 кг/см 2 , жевательных – 10 кг/см 2 .

Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме.

Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А=М·h). Работа измеряется в кг·м, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается. Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы - это работа выполняемая в единицу времени (Р=А·Т). Единица измерения – ватт (Вт).

Утомление мышц

Утомление – это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается. Чем выше частота, сила раздражения и величина нагрузки, тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда. Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура – это состояние длительного, непроизвольного сокращения мышцы.

Работа и утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1. Теория Шиффа : утомление является следствием истощения энергетических запасов в мышце.

2. Теория Пфлюгера : утомление обусловлено накоплением в мышце продуктов обмена.

3. Теория Ферворна : утомление объясняется недостатком кислорода в мышце.

Действительно, эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез АТФ, накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам . Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М. Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным .

В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов, и угнетением синаптической передачи.

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен груз, то амплитуда ее сокращений постепенно убывает, пока не дойдет до нуля. Полученная таким образом кривая называется кривой утомления.

Наряду с изменением амплитуды сокращения при утомлении нарастает латентный период сокращения и увеличиваются пороги раздражения и хронаксия, то есть понижается возбудимость. Эти изменение возникают не сразу после работы, а спустя некоторое время, в течение которого наблюдается увеличение амплитуды одиночных сокращений мышцы. Этот период называется периодом врабатывания. При дальнейшем длительном раздражении развивается утомление мышечных волокон.

Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами: первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (в частности, молочная, фосфорная кислоты и т. д.), оказывающие угнетающее влияние на работоспособность мышцы. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия.

Если изолированную мышцу, помещенную в раствор Рингера, довести длительным раздражением до полного утомления, то достаточно только сменить омывающую ее жидкость, чтобы восстановить сокращения мышцы.

Другой причиной развития утомления изолированной мышцы является постепенное истощение в ней энергетический запасов. При длительной работе изолированной мышцы происходит резкое уменьшение запасов гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для осуществления сокращения.

Утомление нервно-мышечного препарата обусловлено следующими причинами. При длительном раздражении нерва нарушение нервно-мышечной передачи развивается задолго до того, как мышца, а тем более нерв в силу утомления утрачивает способность к проведению возбуждения. Объясняется это тем, что в нервных окончаниях при длительном раздражении уменьшается запас "заготовленного" медиатора. Поэтому порции ацетилхолина, выделяющиеся в синапсах в ответ на каждый импульс, уменьшаются и постсинаптические потенциалы снижаются до подпороговых величин.

Наряду с этим при длительном раздражении нерва происходит постепенное понижение чувствительности постсинаптической мембраны мышечного волокна к ацетилхолину. В результате уменьшается величина потенциалов концевой пластинки. Когда их амплитуда падает ниже некоторого критического уровня, возникновение потенциалов действия в мышечном волокне прекращается. По этим причинам синапсы быстрее утомляются, чем нервные волокна и мышцы.

Следует отметить, что нервные волокна обладают относительной неутомляемостью. Впервые Н.Е. Введенский показал, что нерв в атмосфере воздуха сохраняет способность к проведению возбуждений даже при многочасовом непрерывном раздражении (около 8 часов).

Относительная неутомляемость нерва отчасти зависит от того, что нерв тратит при своем возбуждении сравнительно мало энергии. Благодаря этому процессы ресинтеза в нерве в состоянии покрывать его относительно малые расходы при возбуждении даже в том случае, если это возбуждение длится много часов.

Необходимо отметить, что утомление изолированной скелетной мышцы при ее прямом раздражении является лабораторным феноменом. В естественных условиях утомление двигательного аппарата при длительной работе развивается более сложно и зависит от большего числа факторов.

1. В организме мышца непрерывно снабжается кровью, и, следовательно, получает с ней определенное количество питательных веществ (глюкоза, аминокислоты) и освобождается от продуктов обмена, нарушающих нормальную жизнедеятельность мышечных волокон.

2. В целом организме утомление зависит не только от процессов в мышце, но и от процессов, развивающихся в нервной системе, участвующих в управление двигательной деятельностью.

Так, например, утомление сопровождается дискоординацией движений, возбуждением многих мышц, которые не участвуют в совершении работы.

Утомление - это временное снижение или потеря работоспособности, т. е. результат предшествовавшей . Утомление мышцы в организме в условиях кровообращения зависит не только от величины произведенной ею длительной работы, а от числа поступающих к ней волн возбуждения, вызывающих ее сокращение. При той же частоте раздражения и других равных условиях утомление появляется раньше при большей нагрузке мышцы. При той же нагрузке и других равных условиях утомление наступает раньше при более частых раздражениях. В начале работы высота сокращений увеличивается, а затем признаками развивающегося утомления являются постепенное уменьшение высоты сокращений, увеличение их продолжительности и нарастание контрактуры. Развитие утомления зависит от изменения , кровообращения, и других условий. Чем выше обмен веществ и лучше кровообращение, тем позднее наступает утомление. Оно наступает значительно раньше, когда мышца сокращается, растягиваясь грузом при изометрическом сокращении, и позднее в том случае, когда она сокращается без груза, а следовательно, без напряжения.

Если довести мышцу до полного утомления раздражением , то после перемены направления тока ее работоспособность сразу восстанавливается. Это восстановление объясняется изменением состояния мышцы и сдвигами ионов на полюсах тока. Изолированная мышца уменьшает свою работу или даже перестает сокращаться, когда запас гликогена составляет половину исходного количества. Эти факты не подтверждают теорию истощения (Шифф, 1868), которая объясняет утомление мышцы израсходованием веществ, освобождающих для ее работы. Однако запасы гликогена в организме человека ограничены и составляют 300-400 г. При очень интенсивной работе они потребляются за 1,5-2 ч, что приводит к такому снижению содержания сахара в , при котором работа становится невозможной. Введение сахара в организм восстанавливает его работоспособность.

Теория отравления мышцы при утомлении накапливающимся в ней особым ядом - кенотоксином (Вейхардт, 1904) оказалась необоснованной. Но есть доказательства того, что утомление иногда связано с отравлением возбуждающихся структур продуктами обмена веществ, главным образом фосфорной и молочной кислотами в момент их образования. Остаточные продукты обмена веществ как бы засоряют организм и вызывают утомление - теория засорения (Пфлюгер, 1872).

Накопление фосфорной и молочной кислот уменьшает работоспособность мышцы. Изолированное мышечное волокно в отличие от целой мышцы утомляется значительно позднее при одном и том же числе раздражающих импульсов. Это объясняется тем, что конечные продукты обмена веществ быстрее удаляются из него. В тренированной мышце вследствие большого ускорения анализа и синтеза веществ, обеспечивающих ее работу, утомление наступает позднее. После промывания кровеносных сосудов изолированной мышцы, доведенной до полного утомления, следовательно, после удаления из нее части остаточных продуктов обмена веществ она вновь начинает сокращаться несмотря на то, что не восстановился запас углеводов и кислорода. Эти факты доказывают, что остаточные продукты распада веществ, образующиеся в работающей мышце, - одна из причин ее утомления.

Существует также теории удушения (М. Ферворн, 1903), приписывающая главную роль в утомлении недостатку кислорода. Известно, что работа может продолжаться десятки минут и даже часы без утомления, когда.уровень потребления кислорода ниже предела его поступления, возможного для работающего (истинное устойчивое состояние). Когда потребление кислорода достигает максимума, оно может находиться на постоянном уровне, но не обеспечивает потребность организма в кислороде (кажущееся, или.южное, устойчивое состояние) и работа в этом случае может продолжаться не больше 10-40 мин.

Утомление является нормальным физиологическим процессом, который приводит к прекращению работы. Во время перерывов в работе восстанавливается работоспособность мышц. Поэтому обоснованность участия мелочной и фосфорной кислот в наступлении утомления не позволяет сделать нелепый вывод о том, то труд вреден, так как он, якобы, ведет к отравлению. Нельзя ставить знак равенства между утомлением изолированной мышцы и утомлением всего организма, в котором наступление утомления зависит от изменения функций нервной системы и желез внутренней секреции и от изменения регуляции центральной нервной системой обмена веществ, кровообращения и дыхания. Развитие утомления зависит от снижения работоспособности системы кровообращения, в особенности сердца, и дыхательной системы.

В нормальных условиях при длительной физической работе возбуждение и сокращение мышцы - два взаимосвязанных процесса, которые происходят при потреблении кислорода, так как они осуществляются благодаря очень сложным химическим процессам, завершающимся окислением остаточных продуктов обмена веществ. Работоспособность мышц после утомления восстанавливается в результате окисления этих продуктов. Поэтому потребление кислорода при мышечной работе значительно увеличивается. Если кислорода поступает недостаточно, то при интенсивной мышечной работе наступает недостаток кислорода - кислородный долг. В условиях недостаточности кислорода во время работы функции нервной системы понижаются, что является основной причиной утомления. Кислородный долг погашается благодаря усиленному кровообращению и дыханию не только во время работы, но и после ее окончания. Это погашение кислородного долга заканчивается только после полного окисления остаточных продуктов обмена веществ, образовавшихся во время работы, и полного окончания восстановительных процессов.

В нервно-мышечном препарате утомление развивается в области мионеврального соединения. Основная теория утомления, приписывающая главную роль его развитию в центральной нервной системе целого организма, сформулирована И, М, Сеченовым (1902).

Имеются многочисленные доказательства ведущей роли центральной нервной системы в развитии утомления. Утомлена наступает при действии условных раздражителей. При утомлении усиливается торможение условных и безусловных рефлексов. На развитие утомления влияют приток афферентных импульсе; в головной мозг, эмоции. Сознательная, произвольная мышечная деятельность утомляет больше, чем непроизвольная, автоматическая. Существенное значение для наступления утомления имеет функциональное состояние головного мозга, которое изменяет: при гипоксемии, гипогликемии, гипертермии, накоплении метаболитов в крови, сдвигах функций внутренних органов, особенно сердечнососудистой и дыхательной систем.

Работоспособность мышц

Она зависит от ряда факторов и условий:

1) от правильного чередования работы и отдыха; оптимальный ритм движения обеспечивает лучшие условия для окислительно-восстановительных процессов в мышцах и предупреждает утомление;

2) от нормального функционирования всех систем организма, особенно центральной и симпатической нервной системы, эндокринных влияний, синаптической передачи возбуждения с нерва на мышцу, правильного содержания и кормления животных;

3) продуманный тренинг и правильное управление животными обеспечивают наилучшие условия функционирования всех систем организма и способствуют выработке полезных условных рефлексов при выполнении конкретной задачи;

4) работоспособность мышц улучшается в процессе тренировки, однако работающая мышца и организм утомляются.

Утомление мышцы

В целом организме при работе раньше нервномышечных образований утомляются нервные центры. При утомлении мышцы нарушается синаптическая передача возбуждения с нерва на мышцу. Так, если мышца в результате длительной работы уже не отвечает новым сокращением на раздражение двигательного нерва, то ее можно заставить сократиться, поднеся электроды от стимулятора непосредственно к мышце. Следовательно, утомление в первую очередь, связано с нарушением передачи возбуждения с нерва на мышцу, то есть с недостатком образования ацетилхолина в синаптических бляшках. Однако и в самой мышце происходит ряд биохимических процессов, характерных для утомления: накапливаются фосфорная кислота, связывающая ионы Са2+, молочная кислота и др.

Перегрузка

Перенапряжение мышечных усилий ведет к быстрому утомлению. Систематическая чрезмерная работа и предъявление животному непомерно высоких требований могут привести к «срыву» - быстрой утомляемости и нарушению координации движений.

Непомерная тренировка также вызывает «срыв», поэтому только своевременное предоставление животному отдыха может восстановить работоспособность. Животные, испытавшие перегрузку, долго ощущают ее последствия: у них снижается сократительная способность скелетных мышц, расширяются границы сердца и др.

При неправильном содержании животных выделяют понятия «стадное утомление». У свиней при скученном содержании, недостатке моциона и свободного передвижения, а также в связи с гиподинамией или, наоборот, частыми переменами боксов появляются симптомы повышенной возбудимости, пугливости, слабости конечностей, они не могут быстро и легко ходить и бегать; из-за выделения адаптивных гормонов (норадреналина) снижается качество мяса - «водянистая свинина».

Систематическая и интенсивная работа мускулов способствует увеличению массы мышечной ткани, такое состояние мышцы называют рабочей гипертрофией. В ее основе лежит увеличение массы цитоплазмы мышечных волокон и числа содержащихся в них миофибрилл, сопровождающееся увеличением диаметра каждого волокна. Происходит активизация синтеза нуклеиновых кислот и белков, повышается содержание веществ, доставляющих энергию сокращения (гликогена, АТФ).

Противоположное состояние рабочей гипертрофии - атрофия мышц от бездеятельности. Она возникает в тех случаях, когда скелетные мышцы в силу ряда причин бездействуют или слишком мало участвуют в двигательных актах всего тела, например при обездвиживании конечности после длительного наложения гипсовой повязки, повреждения сухожилий или нервов, отсутствия и недостаточности моциона, при клеточном содержании. Особый вид нейрогенной атрофии возникает в случаях повреждения периферических нервов, когда мышца лишается нервной импульсации и обречена на постепенное отмирание вследствие нарушения трофики. Ведущее значение в этих процессах имеет выключение афферентных импульсов.

© 2024 Спортивный портал