Вконтакте Facebook Twitter Лента RSS

Углеродистая сталь и алюминий что крепче. Честный поединок: сталь и алюминий. Детские велосипеды с алюминиевой рамой

Алюминий, несомненно, обладает рядом неоспоримых достоинств, которые всем давно известны. Однако материал довольно сложный не столько в эксплуатации, сколько при монтаже. При эксплуатации алюминиевого сплава в фасадных подсистемах требуется неукоснительно следовать перечню довольно конкретных правил, которые обеспечат долгое и беспроблемное эксплуатирование в дальнейшем. Надо сказать, что в реалиях российского строительного рынка выполнить эти условия довольно сложно, особенно если учитывать тот факт, что поставщики алюминиевых подсистем зачастую недоговаривают о необходимости соблюдать данные правила

Итак, приводим Вам сравнительную характеристику стальных и алюминиевых подсистем.

* При большом скачке температуры расширение стали незначительно и составляет около двух миллиметров, а для алюминиевых систем этот показатель в два-три раза больше. Поэтому появляется необходимость монтировать некоторые соединения подвижными. Что касается использования стали, соединения являются фиксированными, а следовательно, они более надежные.

* Еще одно существенное достоинство стальной системы заключается в креплениях. В стальной системе абсолютно все кронштейны - несущие, а это означает, что весь листа распределен равномерно. При этом из первого пункта следует, что все крепления при этом являются жесткими и неподвижными, фиксация произведена при помощи саморезов и заклёпок. В то время как в алюминиевых системах присутствует обязательное деление на ветровой и несущий кронштейн. Получается, что весь вес облицовки нагружает только несущие кронштейны.

* Ветровые же кронштейны принимают на себя нагрузки, созданные ветром. Для того, чтобы прикрепить направляющую к кронштейну, в нем необходимо сделать отверстия продолговатой формы. Все крепления происходят с помощью заклепок, а не саморезов. Кроме того стоит учитывать погодные условия и температуру, при которой производится монтаж конструкции, так как от этих условий будет зависеть точка крепления заклепки.

* Стальные системы предусматривают использование однородного с фасадной частью крепежа. То есть все элементы крепления также будут изготовлены из оцинкованной стали или нержавеющих материалов. В алюминиевой системе также предусмотрено использование нержавеющих деталей, в частности саморезов и заклепок. Однако любой монтажник скажет Вам, что у нержавеющих элементов есть некоторые недостатки, а именно: нержавеющие заклепки по ценовым характеристикам в несколько раз больше стоимости самореза, применение заклепки требует больше внимательности и больших временных затрат. Это влечет за собой тот факт, что, зачастую, нержавеющие заклепки заменяют на оцинкованные саморезы, что само по себе является грубым нарушением общих требований.

* Сталь является более прочным материалом, чем алюминий, таким образом имеет почти в 2,5 раза большую несущую способности. Это ведет за собой использование более тонких деталей при монтаже, что помогает значительно облегчить общий вес конструкции.

* Алюминиевые фасадные системы более дорогие еще и потому, что требуют установки противопожарных отсеков на некоторых участках, чтобы отвечать пожарной безопасности. Температура плавления стали превышает температуру плавления алюминия в 2 раза, что делает ее более устойчивой к пожару и даже при его возникновении, сталь не плавится и не способствует дальнейшему распространению огня.

* Стальные системы помогут сэкономить Вам на утеплителе. Сталь в 4 раза хуже проводит тепло, чем алюминий. При конкретных подсчетах выяснилось, чтобы достигнуть одинакового результата, в алюминиевую систему необходимо заложить утеплитель на 20 мм толще, чем в стальную систему.

А теперь представьте, все эти параметры нужно учитывать в реалиях стройки. Вы можете себе представить монтажника, которые сидит и внимательно изучает каталоги и исполняет все предписания, указанные там? И конечно, не ведется учет таких важных факторов, как температура во время монтажа фасадной конструкции.

И стоит напомнить, что ценовой фактор - немаловажный пункт для заказчика. И если основываться на приведенных выше фактах, можно сделать вполне обоснованный вывод, что стальные фасадные системы - отличный пример того, как могут выгодно соотносится цена и качество. Стальная система обойдется дешевле, чем алюминиевая даже при базовых характеристиках. К слову сказать, цена на двухконтурную стальную систему будет ниже, чем затраты на одноконтурную алюминиевую. При заказе двухконтурной алюминиевой подсистемы расхождение по цене может достигать двойного размера.

Алюминий и нержавеющая сталь могут выглядеть похожими, но на самом деле они совершенно разные. Запомните эти 10 различий и руководствуйте ими при выборе типа металла для вашего проекта.

  1. Соотношение прочности и веса. Алюминий обычно не такой прочный, как сталь, но при этом он гораздо легче. Это основная причина, почему самолеты сделаны из алюминия.
  2. Коррозия. Нержавеющая сталь состоит из железа, хрома, никеля, марганца и меди. Хром добавляют в качестве элемента для обеспечения коррозионной стойкости. Алюминий обладает высокой стойкостью к окислению и коррозии, главным образом, благодаря специальной пленке на поверхности металла (пассивирующему слою). Когда алюминий окисляется, его поверхность становится белой и иногда на ней появляются впадинки. В некоторых экстремальных кислотных или щелочных средах алюминий может подвергнуться коррозии с катастрофической скоростью.
  3. Теплопроводность. Алюминий имеет гораздо лучшую теплопроводность, чем нержавеющая сталь. Это одна из основных причин, по которой он используется для автомобильных радиаторов и кондиционеров.
  4. Стоимость. Алюминий обычно дешевле, чем нержавеющая сталь.
  5. Технологичность. Алюминий довольно мягкий и легче режется и деформируется. Нержавеющая сталь более прочный материал, но с ним тяжелее работать, так как он поддается деформации с большим трудом.
  6. Сварка. Нержавеющая сталь относительно легко сваривается, в то время как с алюминием могут возникнуть проблемы.
  7. Тепловые свойства. Нержавеющая сталь может использоваться при гораздо более высоких температурах, чем алюминий, который может стать очень мягким уже при 200 градусах.
  8. Электрическая проводимость. Нержавеющая сталь - действительно плохой проводник по сравнению с большинством металлов. Алюминий – напротив, очень хороший проводник электричества. Из-за высокой проводимости, малой массы и коррозионной стойкости высоковольтные воздушные линии электропередачи обычно изготавливаются из алюминия.
  9. Прочность. Нержавеющая сталь прочнее алюминия.
  10. Влияние на продукты питания. Нержавеющая сталь в меньшей степени вступает в реакцию с продуктами. Алюминий может реагировать на продукты, которые могут влиять на цвет и запах металла.

Все еще не знаете, какой металл подходит для ваших целей? Свяжитесь с нами по телефону, электронной почте или приезжайте в наш офис. Наши менеджеры по работе с клиентами помогут вам сделать правильный выбор!

Велосипедная рама призвана удерживать руль перед владельцем, а колеса - под ним. Существует множество форм, металлов, цветов и конструкций рам. Именно рама должна быть первым существенным фактором при выборе всего велосипеда, как при его сборке, так и при выборе готового экземпляра в магазине. Ведь рама определяет предназначение, которое будет выполнять велосипед, посадку наездника, суть и тяжесть обвесов и креплений. Также это оказывает большое значение на конечный вес велосипеда. А какая разница, какого веса будет велосипед?

Велосипед с алюминиевой рамой

Какая разница, сколько весит велосипед

Существует три базовых параметра, которые влияют на вес велосипеда - его устойчивость на дорожном покрытии, управляемость во время маневров и инерция. Последний параметр учитывает не только саму инерцию, но и энергию, которую нужно затратить для ее компенсации. Как бы странно это не звучало, но когда падает вес велосипеда, то все эти показатели улучшаются. Здесь не работает правило - чем тяжелее, тем устойчивее, так как приходится часто менять центр тяжести, а инерцию сложнее компенсировать.

Так что вес всего велосипеда крайне важный параметр, а его рама несет большую часть веса.

Она может быть стальной рамой, алюминиевой или хромо-молибденовой. Иногда встречаются титановые экземпляры. Вес зависит не только от рамы, но и от всех частей комплекта в совокупности, а также от назначения велосипеда. Шоссейные варианты весят обычно 8-9 килограмм, горные варьируются - есть облегченные варианты с весом в 9 кг, средние взрослые аппараты весят до 11 кг, а экземпляры для даунхилла могут достигать среднего веса в 20 кг.

Отдельные спортивные велосипеды стоят дорого и весят строго выверенное количество кг, но слишком разнятся в зависимости от производителя и назначения, поэтому бессмысленно указывать средний их вес. Наиболее дешевые велосипеды-солянки из «Ашана» и других крупных гипермаркетов стоят мало, но комплектация у них как правило тяжелая, ненадежная и негармоничная. Кататься на таком будет неудобно, тяжело и он быстро придет в негодность, а ремонту они, как правило, не подлежат.

Стальная рама

Как стальная рама, так и рама из различных сплавов с участием стали имеют примерно одинаковый вес. Для того, чтобы рама была максимально прочной, в сплав добавляют хром или молибден. Такая добавка позволяет также делать необычные конструкции рамы - утонченные посередине и утолщенные к краям. Это делает раму более легкой и удобной, а интересный внешний вид привлекает внимание особенно в сочетании с оригинальным цветовым решением. По сравнению с алюминиевыми трубами для рамы эти получаются тоньше и эластичнее.

При использовании стальной рамы пропадает необходимость в установке на велосипед карбоновой вилки или рамы. Ведь чем будет гибче выполненная рама, тем дольше она будет служить своему хозяину. Для туристического велосипеда это будет лучшим вариантом, так как они недорогие, но при этом отлично поддаются мелкому ремонту. Проблема велосипеда из стали заключается в легком обретении коррозии и более тяжелым весом по сравнению с рамой из алюминия. К преимуществам этой рамы из такого материала можно отнести:

  • Отличную инерцию - после того, как владелец прекратил крутить педали, велосипед долгое время сохраняет отличную скорость;
  • Мягкая стальная рама - сталь смягчает силу удара и вибрацию, в сочетании с карбоновой вилкой превращает езду на велосипеде в сплошное удовольствие;
  • Изгиб - часто рама из стали изгибается под непривычными углами, что отлично помогает на поворотах;
  • Долговечность и отличная способность к ремонту материала - помочь сможет каждый второй сварщик.

Но такая рама имеет и небольшое количество недостатков, среди которых увеличенный вес - в самых облегченных вариантах такая рама будет весить на 1 - 1,5 кг больше, чем другие варианты.

Резкий разгон на такой раме тоже не получится.

Рама из алюминия

Сейчас чаще всего изготавливаются велосипеды с алюминиевой рамой. Такие экземпляры легче, более отзывчивы к неровностям дороги, недороги как в ремонте, так и в покупке, а еще они не подвержены коррозии. Жесткость и вес у такой рамы будет лучше, чем у стальной, но сам металл будет иметь меньшую плотность. Алюминиевая рама получается легкой и жесткой, хотя сам диаметр больше у трубы. Если сравнивать со сталью, то увеличение диаметра труб такой рамы приведет к более жесткому варианту, но вместе с тем и на порядок легче.

Ощущаться изменение жесткости практически не будет, но если это ощущается, то можно поставить на велосипед карбоновые вилки, которые будут смягчать дорогу.

Сломанная рама из алюминия

К преимуществам алюминиевой рамы можно отнести:

  • Лучшее среди возможных соотношение между весом и стоимостью конечного результата. Самая низкосортная рама не весит больше 2 кг, а хорошего качества - не более 1,5 кг;
  • Резкий и хороший разгон на любой местности;
  • Алюминий не подвергается коррозии металла;
  • Является лучшим вариантом для велосипедистов с большим весом.

Недостатки этой рамы прямо противоположны достоинствам рамы из стали.

  1. Рама из такого материала не только быстро разгоняется, но и так же быстро теряет всю свою инерцию.
  2. Она является жесткой - алюминий не может погасить вибрации при катании. В сочетании с ригидной вилкой и вовсе катание может превратиться в мучение.
  3. Люди с маленьким весом с трудом будут на нем кататься.
  4. Больше 10 лет такая рама не прослужит, так как накапливает свою усталость и в самый неподходящий момент просто лопнет.
  5. Ремонту также подлежит далеко не каждая поломка такой рамы.

Свойства и качество сталей оценивают рядом технических ха-рактеристик, основными из которых являются механические свой-ства и химический состав, регламентируемые соответствующими ГОСТами и ТУ.

К основным показателям механических свойств относят: проч-ность, упругость и пластичность, склонность к хрупкому разрушению.

Прочность — сопротивляемость внешним силовым воздей-ствиям.

Упругость —свойство восстанавливать первоначальное состо-яние после снятия нагрузки.

Пластичность — свойство получать остаточные деформации после снятия нагрузки.

Хрупкость — разрушение материала при малых деформациях в пределах упругой работы.

Прочность, упругость и пластичность стали определяют испы-танием на растяжение специальных образцов. Полученная при этом диаграмма показывает зависимость между напряжениями и дефор-мацией.

Важнейшими показателями механических свойств стали явля-ются предел текучести — (R y), временное сопротивление (предел прочности — R u) и относительное удлинение (ε). Предел текучести и временное сопротивление характеризуют прочность стали, отно-сительное удлинение — пластические свойства стали.

Диаграмма растяжения алюминиевых сплавов и стали

1 — чистый алюминий; 2 — АМгб; 3 — ABT1; 4 — Д16Т; 5 — сталь марки ВСтЗ

До достижения стандартным образцом из малоуглеродистой стали напряжений, равных пределу текучести, материал работает практи-чески упруго. Затем в нем развиваются большие деформации при постоянном напряжении. В результате образуется площадка текуче-сти (горизонтальный участок диаграммы на рисунке выше). Когда относи-тельное удлинение достигает 2,5%, текучесть материала прекраща-ется, и он снова может оказывать сопротивление деформациям. Эту стадию работы стали называют cmadueit самоупрочнения, в ней ма-териал работает как упругопластический. У других сталей переход в пластическую стадию происходит постепенно (нет площадки теку-чести). Пределом текучести для них считают напряжение, при кото-ром остаточная деформация достигает 0,2%, т. е. σ у = σ 0,2 .

Предельную сопротивляемость материала, характеризующую его прочность, определяют наибольшим условным напряжением в процессе разрушения (отношение разрушающей нагрузки к перво-начальной площади сечения образца). Это напряжение называют временным сопротивлением (пределом прочности).

Наибольшее напряжение в материале, при котором начинается отклонение от прямолинейной зависимости между напряжениями и деформациями, называют пределам пропорциональности σ еt .

Склонность стали к переходу в хрупкое состояние, ее чувстви-тельность к различным повреждениям определяют испытаниями на ударную вязкость.

Механические характеристики стали зависят от температуры, при которой они работают. При нагревании стали до t = 250 °С свой-ства ее меняются слабо, однако при дальнейшем повышении тем-пературы сталь становится хрупкой. Отрицательные температуры повышают хрупкость стали, что особенно важно учитывать при стро-ительстве в районах Крайнего Севера. Малоуглеродистые стали ста-новятся хрупкими при температурах ниже минус 45 °С, низколеги-рованные — при температурах ниже минус 60 °С.

Химический состав стали. Такой состав характеризуется про-центным содержанием в ней различных добавок и примесей. Угле-род повышает предел текучести и прочности стали, однако снижа-ет пластичность и свариваемость. В связи с этим в строительстве применяют только малоуглеродистые стали. Специальное введение в сталь различных примесей (легирующих добавок) улучшает не-которые свойства стали.

Кремний (обозначается буквой С) раскисляет сталь, поэтому его количество возрастает от кипящей к спокойной стали. Он увеличивает прочность стали, однако несколько ухудшает свариваемость, стойкость против коррозии и значительно снижает ударную вязкость. Вредное влияние кремния компенсируется повышенным содержанием марган-ца. Марганец (Г) — увеличивает прочность стали, незначительно снижая ее пластичность. Медь (Д) — несколько повышает прочность ста-ли и увеличивает стойкость ее против коррозии, но способствует старению стали. Алюминий (Ю) —хорошо раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость. Значительно повышает механические свойства введение в сталь таких легирующих добавок, как никель (Н), хром (X), ванадий (Ф), вольфрам (В) и др. Однако применение этих добавок в сталях, используемых в инженер-ных конструкциях, ограничивается их дефицитностью и высокой стоимостью.

Некоторые примеси являются вредными для сталей. Так, фос-фор резко уменьшает пластичность и ударную вязкость стали, де-лает ее хрупкой при низких температурах. Сера несколько снижает прочность стали и, главное, способствует образованию трещин при сварке. Кислород, водород и азот, попадая в расплавленный металл из воздуха, ухудшают структуру стали, увеличивая ее хрупкость.

В зависимости от механических свойств (σ u , σ у), все стали ус-ловно делят на три группы — обычной, повышенной и высокой прочности. Для сталей обычной прочности используют малоугле-родистые стали, для сталей повышенной и высокой прочности — низколегированные и среднелегированные.

В зависимости от предъявляемых требований по испытаниям на ударную вязкость, малоуглеродистая сталь разделена на шесть категорий, для каждой из которых нормируются химический состав, значения временного сопротивления, относительного удлинения и требования к испытанию на холодный загиб.

Для гидротехнических сооружений, мостов и других особо от-ветственных конструкций предназначены малоуглеродистые стали марки М16С и марки 16Д.

Стали повышенной и высокой прочности (низколегированные и среднелегированные) поставляются по ГОСТам и специальным техническим условиям. Наименование марок легированных сталей в определенной мере отражает их химический состав. Первые две цифры показывают среднее содержание углерода в сотых долях процента, следующие далее буквы русского алфавита обозначают легирующие добавки. Цифра после буквы показывает содержание добавки в процентах с округлением до целых значений. Если коли-чество легирующих добавок 0,3-1%, то цифра не ставится. Содер-жание добавки менее 0,3% не отмечается. Все стали повышенной и высокой прочности поставляются с гарантией механических свойств и химического состава. В зависимости от нормируемых свойств согласно ГОСТу стали подразделяются на 15 категорий.

Примеры обозначения: сталь 14Г2 имеет среднее содержание угле-рода 0,14%, марганца (Г) до 2%; сталь 15ХСНД— углерода 0,15%, хрома (X), кремния (С), никеля (Н) и меди (Д) 0,3-1% каждого.

В целях экономии металла прокат из углеродистой стали марок СтЗ, СтЗГСпс и низколегированной стали марок 09Г2,09Г2С и 14Г2 поставляют по 2 группам прочности (например, ВСтЗсп5-1 и ВСтЗсп5-2). Отличаются такие стали различным браковочным уров-нем предела текучести и временного сопротивления, и в связи с этим расчетными сопротивлениями. Более высокие расчетные характе-ристики имеют стали, отнесенные ко второй группе прочности.

Выбор марки стали определяет надежность и стоимость конст-рукции, удобство изготовления, длительность нормальной ее эксп-луатации, количество, объем и стоимость работ по содержанию кон-струкции, в том числе и по защите от коррозии.

Марку стали, если по условиям эксплуатации конструкций не выдвигается специальных требований, выбирают на основании ва-риантного проектирования и технико-экономического анализа.

Прочность материала характеризуется небольшим напряжени-ем, при достижении которого начинается процесс разрушения об-разца. Это напряжение называют временным сопротивлением или пределом прочности.

При увеличении прочности стали заметно уменьшается площад-ка текучести, а для некоторых сталей характерно полное ее отсут-ствие. Это свойство снижает надежность стали, увеличивая ее склон-ность к хрупкому разрушению.

Для растяжения, сжатия и изгиба при работе в упругой стадии расчетные сопротивления R y , определяют по нормативному значе-нию по формуле:

где R yn — нормативное значение, МПа; γ m — коэффициент надеж-ности по материалу (1,025-1,15).

© 2024 Спортивный портал